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symmetry and will consist of a number of 
equal sectors each of which can be mapped 
on a rectangle in the hodograph plane. Thus 

it is easy to obtain an approximate flow pat- 
tern and stagnation zones in the isolated 
regions. The outer stagnation zones surround- 
ing the point at infinity are, of course, the 
most interesting ones, since the stagnation 
zones near the inner critical points of the 
flow are small, when 5 is small. 

The authors express their gratitude to 
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G. I. Barenblatt for the comments made and 
to I. I. Eremina and T. N. Ivanova for the help 
rendered. 
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Appearance of a secondary steady flow which is a Taylor vortex, caused by the loss of 
stability of the Couette flow between the rotating (in the same direction) cylinders is 
investigated using the Liapunov-Schmidt method. It is shown that the secondary solution 
can be obtained in the form of a series in powers of the parameter e = (NRe - Nn,.) % 

where N,, is the Reynolds’ number and Nu,,. denotes its critical value. First two terms 
of the series are analised for two separate cases and it is established that the Taylor vor- 
tex is defined uniquely with the accuracy of up to the displacement in the axial direc- 
tion. Perturbation theory is used to show that at small s the Taylor flow is stable with 
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respect to rotationally symmetric perturbations. 
Example of analysis of the torque is given at the end of the paper. 

1. Strtemeat of the problem and the reeult#,, Let a viscousincom- 
pressible fluid of unit density and viscosity coefficient 1) , fill the space between two 

concentric cylinders of radii Z$ and Rs rotating with angular velocities 51, and a, 
(!&sZs > 0). We shall seek the %(/a-periodic flows parallel to the z -axis of the 

cylinders, under the assumption that no loss of fluid occurs on the transverse direction. 
Then the Navier-Stokes equations will have a solutionv~(Couet~ flow) whose compo- 
nents will be given, in cylindrical ( r, 8, z )-coordinates, by 

UQr = vos = 0, VO6 = arfb/r (1.1) 

The Couette flow is defined by the parameters $%and B and is independent of the Rey- 
nolds’ number ~~~ = && R,slv. 

We shall seek a secondary flow v’ in the form vt = v. f v and the corresponding 
pressure p’ in the form p’ =po f p/Re,where p. is the pressure corresponding to the 

flow (1. I). Quantities v and p are given by the following Eqs. (in dimensionless vari- 

Solution v, p of the system (l-2)-(1.5) must be 2n/u-periodic in z and satisfy the 
following boundary conditions 

v= 0 when r=l, R 
R 

0.6) 

f v,(r, z) rdr = 0 U.7) 

We shall asSume that U < 0 aid this will imply that the flow (1.1) is unstable at 

large NR~ . 
Rigorous proof of the above statement, known already to Taylor (in 1924), is given in 

[l. 2 and 31. Let N,,, be the least eigenvalue of the corresponding linearized problem. 

It was shown in g arid 31 that this eigenvalue is double for all a, with the exception of 
a certain enumerable set (it is single in the vector subspace in which v, and ye are even 

and us is odd) and, that it represents a bifurcation point of the nonlinear problem (1.2)- 
-(l.‘l)(see also [4 and 5)); when N,, is almost equal to NROrr then the above problem 
has nonzero solutions vanishing as N,, -+ N,,,. 

Subsequent application of the Liapunov-Schmidt method makes it possible to establish 
the number of small-value nonzero solutions and to investigate the spectral distribution 
of the nonlinear problem. 

Using the results of [6] we show, that the nonzero solution is unique up to within the 
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displacement along the z-axis (two solutions are obtained in the subspace indicated 
above) and, that it is an analytic function of the parameter e = (Nnc - Nne,)“z, It 
exists only for N,, > N,,, and is stable under the rotationally symmetric perturbations 
while the Couette flow (1.1) becomes unstable. 

No general proof of the above facts exists (it can be given for the case of a narrow 
gap between the cylinders ; see also analogous results obtained for the related free con- 

vection problem [S- 81). The main difficulty lies in the fact that the results of [6] can 
be utilized if and only if it is proved that a certain constant .g is positive (see’below 

r2.281). This has not been proved for the general case but, when R and a are given, 
then its correctness can be established by numerical methods while computing the second- 
ary flow. An example of such a procedure is given in Section 3. 

To dispel the possible wrong impressions, we shall remind the readers that the “prin- 
ciple of alteration of stability” for the case of the Couette flow and the possibility of 
restricting ourselves to the rotationally symmetric perturbations (there is no analog to 
the Squire’s theorem) although confirmed by experiments, have not yet received a rigo- 

rous proof. 

2, The L!o_punov-Schmidt method. 1. Liapunov-Schmidt series. 
We shall seek the solution of the problem (1.2) - (1.7) in the form 

co 

v = 2 ekvk, p = $j ekpp, e = (Nne - NR~.)“: (2.1) 
k=l k=1 

Vectors vlr should be solenoidal, periodic in z, vanish at r = 1, R, their transverse 
flux should be equal to zero, and they should satisfy the equations following from (1.3) - 

- (1.5) and (2.1) 

Av, - vp,c = NW. 2 L (v,,v,) -+- 2 L (v,, v,) + h’vk-l= fk (2.2) 
m+n=k ,n+n=k--? 

where the differential operators A and L are given for any vectors u and v symmetric 

under rotation, by A = A “- Nnc,K 

(J,,\‘),= Au&, (&v)e-~ AI+-;, (/l,,v), = Au, 

(Ii-v)r =1 - 2 :;I?! (,Y”, (It-V)” = (2 + T) ur, (KY), = 0 (2.3) 

{L(llV)}, = - y + q.2 -+ u, 2 

UOVr au, (?I,, r?u 
{L(u,v))o=-y- +u,~+u,;, {L(u,v)),=uu,;j;i.+uz~ 

We shall seek such solutions of (1.2) - (1.7). for which u r and ya are even functions 
and L’; is an odd function of z , and therefore we shall subject the vectors 1 1, to the same 
conditions. In particular for vr, y2 and v3 we have 

Av, - v p, = 0, AYz - vp2 =Nm.L (vii v*) (2.4) 

A\,:, _ VP, z jV,{,,. [I, (v,, v2) -t_ 1, (v?, Y,)] -I- I\v, (2.45) 

The right-hand side of (2.8) contains only the coefficients of the expansion (2.1) 
whose indices are less than k. Therefore ~1, and pk can be determined from the consecu- 
tive solutions of the linear problems. For vr and pr we have 
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v 1 = h% 

where $I is an independent constant and 
the folIowing boundary value problem: 

flow between rotating cylinders 887 

Pl = BlPlO Gw 
‘p, pie represent the characteristic solution of 

-4cp-- V ho = 0, tlivcp = 0 (2.7) 
I( 

h= 1. R = 0, s rp,rdr = 0 (3.8) 
1 

This solution is &t/a-periodic and such, that cp r and (ro are even functions, while 
cp, is an odd function of Z* We shall include, for definiteness, the normalizing condition 

n/zm R 

s s cp,rdrdz= $ 
-n,211 

(2.9) 

Let Q and q be a characteristic solution of the conjugate problem 

A*$ -y7q =o, div 9 =O (2.10) 
R 

II, lr=l, R = 0, s $,, rdr = 0 (2.11) 
1 

A* = A,- NRC. K*, {K*v}, = (2 $- F) ug 

(K*v)e = - 2y u,, {K*v)Z = 0 

satisfying the previous conditions of periodicity, parity and the normalizing conditions. 

Then the condition that the boundary value problem (2.2) has a solution, assumes the 
form [2] anla R 

c s 
; 1 

f& rdrds = 0 (2.12) 

2. Linearized problem. We shall seek the solution cp of the problem (2.7)) 

(2.8) in the form 
cp r (r, z) = ‘pl r (r) co9 .az, @I (r, z) = q+3 (r) co9 ccz 

cpz (r, 4 = ‘Plr (r) sin az, AO (r, z) = g1 (r) cos az (2.13) 
Functions (pt r and vlo will be solutions of the following system of ordinary differen- 

tial equations 
(1; - a2j2 ‘Plr = 2~9J~n (r) (PIQ, (L - a2) ‘plu = 2&q,, (2.14) 

(2.15) 
and will satisfy the boundary and normalizing conditions 

% 
R 

'PO = 7 =~,a=0 when r=l, R; S VI,. rdr = 1 (2.16) 
1 

Functions [I’, Z and f/, are given by 

It was shown in [S] that for any a the problem (2.14) - (2.16) has a sequence of posi- 
tive and simple eigenvalues 0 < h, (a) ( hs (a) ( . . . . Moreover, for all a except 
some enumerable set, Nnc* = & (01) is a simple eigenvalue of the problem (2.7), (2.8). 
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We shall further assume that CC is not a member of the above set. Then A1 (cc) < 
< hk fM) for all natural k and m except k = m = 1, 

We similarly obtain the solution of the conjugate system (2. IO), (2.11) in the form 

9, (r, z) =$ir (r) co9 az, *9 (r, 2) -q10 (r) COB az (2.18) 

9, (r, z) = *It (r) sin az, q (r, 2) = go (r) co9 a2 

The following boundary value problem yields g,, (r) and J.rts (r) 

(L - cw %r =-%@ @N~e*Vte, (L - a2) *se = -2NRe.m +j+* (2.19) 
R 

glr = _?$L =$e=O when r--1, R; 
s 

qrs rdr = 1 (2.20) 
1 

Functions $tz and qo are given by 

%r = -f;l’;(tirA 
I d-= Id 

90=--F .dT+---a2 
( r dr > 

*%, (2.21) 

3. Determination of us. From(2.4) and (2.6) we have 

Avz - VP2 = hwfc L (44 cp) (2.22) 

and we seek its solution in the form 

v2 = p29 + HRe*i% w, PZ = i& + ~R~*~~q~ (2.23) 

where f12 is an unknown constant while w and qs represent the solution of the following 
boundary problem : 

Aw,- G + ~NR,*Qx.u~ = 2 +-+F,(r) + -+F2(r)cos2az 

Awe - G - 2aN~t~q = f F3 (rf + f Fb (r) cos 2az (2.24) 

Aw, = ‘$ $ $ F6 (r) sin 2az 

+~(rW,)+~=o, Wp=We=Wz=o whenr=i,R 

Here we utilize the following notation: 

avlzn,, FS (4 = - 

FM = 9 + qlr 2 - afp12q10, Fo. (r) = q + qlr “1: - +a~12~lr 

Fe (4 = ylr% + acp2 
Solution of (2.24) has the form 

w, (r, 2) =wt, (r) cos2a2, we (r,‘z) = woe (r) + WI@(r) co9 2~42 (2.25) 

wz (r, 2) = wlz (r) sin 2a2, c12 h 4 = ~20 (4 + qzr (r) cos &CZ 

and the solution of the boundary value problem 

(L - f&~L~)~wi, = 81\rn@ a26.n0rs - 2z2F8 - a 2 (2.26) 

(J!,- 4aa) W,B = &.Zh&~Wlr + $ , 
dw, 

W,, = 7 = Wld =O.when r=i,R 
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yields the functions wr , and wls while for was, rqt, gso and Qn we obtain 

wti=+ 
r f+$e (P) %I. (P) s ’ R cpto (P) Vr r (P) 

P dP- C,,‘Z) s p dP 
1 1 

7 

%r = -- &g hrh 900 = 
SC 

F’ 2NRe* OW~-~ 
> 

dp + const 

1 

1 
!?zl=--~ (2.27) 

The system (2.26) has a unique solution. 
Indeed. as it was shown previously, NR,. =h, (a), and it cannot coincide with any 

of its eigenvalues Ar (2a), As (2a)... . Condition that (2.12) has a solution for k,= 3 
and k = 4 , yields 

p, = 0 (2.28) 

m/a R 

Ji = ss rot cp rot $ rdr dz (2.29) 
0 1 

an’s R 

Jl = Nie. ss [L (CP, W) + L (w, @I 4 rdrdz (2.30) 
0 1 

We note that if VA is sought in the form Vh = /3@1 + WA, where flk is an unknown 
constant and wk is a particular solution, orthogonal in 9, of the corresponding inhomo- 
geneous problem (2.2), then the solvability condition implies that all bk with k even, 

vanish. 
4. Spectral perturbation and stability. Small perturbation equation for 

the Couette flow has the form 
QU- -&Au+Ku=--‘imp (2.31) 

When NRe = NR~. , then o = 0 is one of the eigenvalues of the problem (2.31). 
For the supercritical Reynolds’ numbers (Nn, = NR~. -/- e2) the first eigenvalue d 

can, in accordance with the perturbation theory, be expanded into the series 
sn,a 11 , . 

a = a# + a2e4 + . . .) a, = 2 , Jo = NJW ss (ut) rdrdz (2J2) 

where Jr is given by (2.29). 
0 1 

For the Taylor flow we have the following small perturbation equation: 

Q’U --~AU+~U+4W(cp, U)+L(U,cp)l+ 

+ ePlahe* [L(u, w) + L(w, U)] -+ . . . =-vq (2.33) 

When the Reynolds* numbers are supercritical, the first eigenvalue 0’ can be expanded 

into 6’ = b,,ea + b,,e* + . . . , a12 = - zq 

and.applying the result of IS], we can formulate the following theorem. 
Theorem. Let the quantities ,g and a, defined by (2.28) and (2.32) be positive. 

Then, as the Reynolds’ number passes through its critical value NR~ = 5 (cc) , the 
Couette flow becomes unstable. However, a new, stable steady flow appears (the Taylor 
vortex), which can be represented by the Liapunov-Schmidt series (2.1) and which is 
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uniquely defined to within the displacement along the &-axis) by its wave number dc. 
Conditions of the theorem (positiveness of g and ai) have SO ,far been verified only 

for the case of a narrow gap between the cylinders and for the allied problems on con- 

vection 15 - 7). In the present paper the validity of these assumptions is established by 
numerical methods. 

3. Compurrtfon of the Taylor vortex, Let us consider the following 

boundary value problem (t _ as) u = f, u = 0 when f = 1, R (34 
Its Green’s function is given by 

&(r+ p) = ( ;;;;;;;; E f=; (3.2) 

where 
L) = -1, @I. x1 W) +,I1 (an) fi, (a) 

qJrl (r) = I1 (w) Ii1 (ot) - II(u) Kl (ar) 

$2 (r) = II (aR)K, (ar) - .li,(aR)I, (ar) 

The boundary value problem 

(L- .2>s U = f, (b=$=O when = I, X 

has the corresponding Green’s function G 2,a (r, p), Since it is symmetrical, the expres- 

sion for r > p 

where 

u1 = A,(r) I, (ur) - Aa (r) K, (ar), ua = A3 (r) I, (XT) - A, (r) h’, (ur) 

A, (r) = S I1 (co-) K, (ur) rdr, A2 (r) = i f12 (ur) rdr 
11 1 

A3 (r) = S K12 (a;) rdr, Ill = Al2 (R) - 122 (Ii) A, (I?) 

is sufficient to define it.’ 

Integrals AI (r), AZ (r) and ha (r) can be expressed in the terms of Bessel functions 

(see e. g. PI, pp. S-99). 
Relations (2.14) - (2.16) yield R 

'Plr = 2NRe*a* s Ga. a (‘; p) (13 (p) ‘plo (p) pd@ 
1 

(3.4) 

from which we obtain R L 

%I* = h s GS, a b-s PI (Plr (PI p@ (3.5) 
1 
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The eigenvalue and the corresponding characteristic solution of the integral equation 
(3.5) can be found using the method of consecutive approximations according to the 
scheme RR -1 

h(W) = (1 S G3, a trt PI ‘Plr(n-1) (PI WPdr) 
11 

(X7)* 

R 

(&F(T~) = &2-z) \ Gs, a tr, PI ‘Pir(n-1) (Pf Ctll’P (3.8) 
i 

Since the kernel Gs,a (r, p) is oscillatory 133 and the theorem on the positiveness 

of its eigenvalue holds (see e. g. [IO]. ch. 2, Section 3). the sequences (3.7) and (3.8) 

converge, respectively, to the smallest eigenvalue and to the eigenfunction of Eq. (3.5). 
The value of a = a, chosen for the computations was such, that Nno* = 1, (a.+.)= 

= mine %.r (ot), since this case is the most interesting from the physical point of view. 

Computations can, however, be performed for any value of CL. 
Values of the kernels G, ,a, G2,= and G~,R were given in the matrix form. All neces- 

sary integration was performed using the Simpson, trapezoidal or rectangular rule, and 
the interval of integration was divided into sixteen equal parts. The final results were 

accurate to at least two or three digits. The method converged very rapidly for the 
example chosen, and only six integrations were needed, 

Having obtained ql,., we can find q+o from (3.4)* and cplr from (2.17). we obtain 
R 

(4-k = - 2Nnc. cc 
s ( 

+ 
1 

G,, L1. (r, p) + r’7C,*;r(r’ “) co (p) (pro (p) pdp (X0) 

The derivative dGm (r, p)/& and other necessary derivatives were calculated 
directly in order to eliminate any errors which might have arisen during the numerical 
differentiation. Tables 1 and 2 give the results of computation for two cases (R = 2 

and R = 1,5). 
The conjugate system (2.19),(2.20) can be replaced by the following integral equa- 

tions 

? 

9 - --Nnd2\ G2,u(rr P)~;o(P)P~P 1r - 
1 

R 

$10 = - 2Nrw 1 GI, a (p, PI (1) (P) %r (P)P~P 
I 

which yield the following expression : 

$10 - 4Nb2 f Gt, a (p, p) $10 (p) pdp 
1 

From (2.21) and (3.10) we obtain 

(3.10) 

(3.11) 

(3.12) 

(3.13) 
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Table 1 
Results of computation for the case R=lt2, a=3,163 

-0.01R7 
-0.0327 

rs% 
-0:0&7 

-0.0.305 
'z~,Ol-ll~ 

0:OlG 
0.0170 

8.0246 
omn3 
o.n.30R 
n.0274 
O.OlDl 

Table 2 
Results of computation for the case fi:=j.r), a==fi 

r ‘I %r -&i-j-T 
- 

I - “lr "00 '"10 “12 

I.0313 O.G%l 
l.Om 1.3lD) 
1.8-ml? i.m5 
t.125 2.314'1 
I.1563 2.Gf42 

0.1262 Il.2246 0.4327 0.7527 z% 
10.00R6 

ll.R2fi7 t.3!MO -2:*3904 
1.23ttS '2.0274 

~~:~~~~ 
-2.2760 

1.594R 
-0.fO.15 

2.Ki4 -1.9522 -0.liO7 

l.RA'7 2.R997 -1.4255 
2.0244 a.rl400 

-n,n!lRo 
-0.7735 

2.0520 2.993i 
--0.0707 

l.I?513 
--0.0724 -o.o:l2l 

2.71395 0,fiiGI 
1.7358 

n.l-!17:i 
2.4014 1.1058 0.0497 

1.1.m i .nw i,GRftll 
t.mo I.4139 l*fMl 
O.l%lP, O.Ro87 

~:~~~~ 

E% 
Il.& 

t.3 ;A;$ 
r oh9 EE 2 

The conjugate problem can be solved using the method given above, and the results 
are given in the Tables 1 and 2. 

From (2.2Qwe obtain the following expressions for q r and z&e (3.14) 

0.14RI -0.3s4li 

i4: 
0:1m7 

-K% 
lb:kN 

0.1565 * I 0 2‘02 

0.1282 
0.0'41 
ps& 

o:oh3 

Wlr 

1 1 
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Inhomogeneous integral equation (3.16) is solved by the method of consecutive appro- 
ximations which converges, if p < ~1 (11~ is the 

smallest eigenvalue of the kernel G3,,J. This con- 
dition is fulfilled if a is sufficiently near a, and 
for any a > a,. Indeed, in this case we have 

CL//Q = X,2(a)/hlz (2a) < 1 
In particular, when a-u*, 1 4 pl - I/,, and the - 

method converges exceptionally well. Taking 

Wlr(o) = F (r) for the null approximation, we 
obtain the desired result already on the twelfth 

iteration. 
5u 70 30 r/o Uf? 

Fig. 1 

Function fulU is obtained from (3.15). while 
(2.27) and (3.14) together yield 

x ( 8Nne, aawle - 2u2F2 ---a T) & 

Function w,,,o together with the constants & and 01 are obtained by numerical inte- 
gration using Formulas (2.27) - (2.30) and (2.32). 

Tables 1 and 2 give the results of the computations. Fig. 2 and 3 show the components 
of v1 and v, as functions of the radius, 

f 2r 

and the stream function of the Taylor 

vortex. 

Fig. 2 Fig. 3 

Components of the vector /& where 0; = {hr, qle, ~1 are shown with solid lines, 
components of the vector 8,’ N,,..w, where ~1 = (I+, We,,, W~J, are shown with dashed 
lines and the function pXa NReJOoe by the dot-dash line. 

4. Evaluation of the torque. The torque due to the viscous forces acting 
on the inner Cylinder is given by 
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G = 2nRllrpv~ N 

lb-R1 Ite dZ 
1 

(4.1) 

where h is the length of the cylinder. Inserting the expansion (2.1) into (4.1) we obtain 
the expression for G in the form of a series in powers of Ba = nTnc - Nneq 

G = Go + tCGz + e4GC f . . . (4.2) 

Thus the formation of the Taylor vortices leads to the appearance of an angular point 
on the graph of the function G = G (NRC). 

Results of the computation of the viscous torque for h ; 5 cm, v = 0. I226 cm Z set-1 , 
and p - 0.XG04cm’Y. For II == :: and u -- Xl6:l we have 

(; - 71.7H -I- l.!l(i t? -j- . . . 

while for li -: 1.5 andctr -. Ii , we have 
(,’ /l;rJ./l I- 8.18 I:2 j- . . . 

Fig. 1 shows the comparison of the values of the torque calculated according to (4.3), 
with the results of Donnelly and Simon [ll] and the approximate values obtained by 

Davey in [12]. Solid line is used to plot the viscous torque for the Couette flow, broken 
line shows the results of Davey and the dot-dash line denotes the results of the present 

paper. Experimental values obtained by Donnelly and Simon are denoted by crosses. It 
should be noted that a good agreement with the experimental data is obtained over an 
unexpectedly wide interval of the Reynolds’ numbers, and in any case, for NIL, < 120. 
This confirms, that the terms neglected in (4.3) were small. Presumably, even the appear- 
ance of the azimuthal waves resulting from the instability of the Taylor vortex, does not 
affect the torque to any significant degree. 
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